
6
Abelian groups

This chapter introduces the notion of an abelian group. This is an abstraction that
models many different algebraic structures, and yet despite the level of generality,
a number of very useful results can be easily obtained.

6.1 Definitions, basic properties, and examples
Definition 6.1. An abelian group is a set G together with a binary operation ? on
G such that:

(i) for all a, b, c ∈ G, a ? (b ? c) = (a ? b) ? c (i.e., ? is associative);

(ii) there exists e ∈ G (called the identity element) such that for all a ∈ G,
a ? e = a = e ? a;

(iii) for all a ∈ G there exists a′ ∈ G (called the inverse of a) such that
a ? a′ = e = a′ ? a;

(iv) for all a, b ∈ G, a ? b = b ? a (i.e., ? is commutative).

While there is a more general notion of a group, which may be defined simply
by dropping property (iv) in Definition 6.1, we shall not need this notion in this
text. The restriction to abelian groups helps to simplify the discussion significantly.
Because we will only be dealing with abelian groups, we may occasionally simply
say “group” instead of “abelian group.”

Before looking at examples, let us state some very basic properties of abelian
groups that follow directly from the definition:

Theorem 6.2. Let G be an abelian group with binary operation ?. Then we have:

(i) G contains only one identity element;

(ii) every element of G has only one inverse.

126
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Proof. Suppose e, e′ are both identities. Then we have

e = e ? e′ = e′,

where we have used part (ii) of Definition 6.1, once with e′ as the identity, and
once with e as the identity. That proves part (i) of the theorem.

To prove part (ii) of the theorem, let a ∈ G, and suppose that a has two inverses,
a′ and a′′. Then using parts (i)–(iii) of Definition 6.1, we have

a′ = a′ ? e (by part (ii))

= a′ ? (a ? a′′) (by part (iii) with inverse a′′ of a)

= (a′ ? a) ? a′′ (by part (i))

= e ? a′′ (by part (iii) with inverse a′ of a)

= a′′ (by part (ii)). 2

These uniqueness properties justify use of the definite article in Definition 6.1
in conjunction with the terms “identity element” and “inverse.” Note that we never
used part (iv) of the definition in the proof of the above theorem.

Abelian groups are lurking everywhere, as the following examples illustrate.

Example 6.1. The set of integers Z under addition forms an abelian group, with 0
being the identity, and −a being the inverse of a ∈ Z. 2

Example 6.2. For each integer n, the set nZ = {nz : z ∈ Z} under addition forms
an abelian group, again, with 0 being the identity, and n(−z) being the inverse of
nz. 2

Example 6.3. The set of non-negative integers under addition does not form an
abelian group, since additive inverses do not exist for any positive integers. 2

Example 6.4. The set of integers under multiplication does not form an abelian
group, since inverses do not exist for any integers other than ±1. 2

Example 6.5. The set of integers {±1} under multiplication forms an abelian
group, with 1 being the identity, and −1 its own inverse. 2

Example 6.6. The set of rational numbers Q = {a/b : a, b ∈ Z, b 6= 0} under
addition forms an abelian group, with 0 being the identity, and (−a)/b being the
inverse of a/b. 2

Example 6.7. The set of non-zero rational numbers Q∗ under multiplication forms
an abelian group, with 1 being the identity, and b/a being the inverse of a/b. 2

Example 6.8. The set Zn under addition forms an abelian group, where [0]n is the
identity, and where [−a]n is the inverse of [a]n. 2
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Example 6.9. The set Z∗n of residue classes [a]n with gcd(a, n) = 1 under multipli-
cation forms an abelian group, where [1]n is the identity, and if b is a multiplicative
inverse of a modulo n, then [b]n is the inverse of [a]n. 2

Example 6.10. For every positive integer n, the set of n-bit strings under the
“exclusive or” operation forms an abelian group, where the “all zero” bit string
is the identity, and every bit string is its own inverse. 2

Example 6.11. The set F∗ of all arithmetic functions f , such that f (1) 6= 0, and
with the Dirichlet product as the binary operation (see §2.9) forms an abelian
group. The special function I is the identity, and inverses are guaranteed by
Exercise 2.54. 2

Example 6.12. The set of all finite bit strings under concatenation does not form
an abelian group. Although concatenation is associative and the empty string acts
as an identity element, inverses do not exist (except for the empty string), nor is
concatenation commutative. 2

Example 6.13. The set of 2 × 2 integer matrices with determinant ±1, together
with the binary operation of matrix multiplication, is an example of a non-abelian
group; that is, it satisfies properties (i)–(iii) of Definition 6.1, but not property
(iv). 2

Example 6.14. The set of all permutations on a given set of size n ≥ 3, together
with the binary operation of function composition, is another example of a non-
abelian group (for n = 1, 2, it is an abelian group). 2

Consider an abelian group G with binary operation ?. Since the group operation
is associative, for all a1, . . . , ak ∈ G, we may write a1?· · ·?ak without parentheses,
and there can be no ambiguity as to the value of such an expression: any explicit
parenthesization of this expression yields the same value. Furthermore, since the
group operation is commutative, reordering the ai’s does not change this value.

Note that in specifying a group, one must specify both the underlying set G as
well as the binary operation; however, in practice, the binary operation is often
implicit from context, and by abuse of notation, one often refers to G itself as the
group. For example, when talking about the abelian groups Z and Zn, it is under-
stood that the group operation is addition, while when talking about the abelian
group Z∗n, it is understood that the group operation is multiplication.

Typically, instead of using a special symbol like “?” for the group operation, one
uses the usual addition (“+”) or multiplication (“·”) operations.

Additive notation. If an abelian group G is written additively, using “+” as
the group operation, then the identity element is denoted by 0G (or just 0 if G is
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clear from context), and is also called the zero element. The inverse of an element
a ∈ G is denoted by −a. For a, b ∈ G, a − b denotes a + (−b).

Multiplicative notation. If an abelian group G is written multiplicatively, using
“·” as the group operation, then the identity element is denoted by 1G (or just 1 if
G is clear from context). The inverse of an element a ∈ G is denoted by a−1. As
usual, one may write ab in place of a · b. Also, one may write a/b for ab−1.

For any particular, concrete abelian group, the most natural choice of notation is
clear (e.g., addition for Z and Zn, multiplication for Z∗n); however, for a “generic”
group, the choice is largely a matter of taste. By convention, whenever we con-
sider a “generic” abelian group, we shall use additive notation for the group
operation, unless otherwise specified.

The next theorem states a few simple but useful properties of abelian groups
(stated using our default, additive notation).

Theorem 6.3. Let G be an abelian group. Then for all a, b, c ∈ G, we have:

(i) if a + b = a + c, then b = c;

(ii) the equation a + x = b has a unique solution x ∈ G;

(iii) −(a + b) = (−a) + (−b);

(iv) −(−a) = a.

Proof. These statements all follow easily from Definition 6.1 and Theorem 6.2.
For (i), just add −a to both sides of the equation a+b = a+ c. For (ii), the solution
is x = b − a. For (iii), we have

(a + b) + ((−a) + (−b)) = (a + (−a)) + (b + (−b)) = 0G + 0G = 0G,

which shows that (−a) + (−b) is indeed the inverse of a + b. For (iv), we have
(−a) + a = 0G, which means that a is the inverse of −a. 2

Part (i) of the above theorem is the cancellation law for abelian groups.

If a1, . . . , ak are elements of an abelian group G, we naturally write
∑k
i=1 ai for

their sum a1 + · · · + ak. By convention, the sum is 0G when k = 0. Part (iii) of
Theorem 6.3 obviously generalizes, so that −

∑k
i=1 ai =

∑k
i=1(−ai). In the special

case where all the ai’s have the same value a, we define k · a :=
∑k
i=1 a, whose

inverse is k · (−a), which we may write as (−k) · a. Thus, the notation k · a, or
more simply, ka, is defined for all integers k. Observe that by definition, 1a = a

and (−1)a = −a.

Theorem 6.4. Let G be an abelian group. Then for all a, b ∈ G and k, ` ∈ Z, we
have:

(i) k(`a) = (k`)a = `(ka);



130 Abelian groups

(ii) (k + `)a = ka + `a;

(iii) k(a + b) = ka + kb.

Proof. The proof of this is easy, but tedious. We leave the details as an exercise to
the reader. 2

Multiplicative notation: It is perhaps helpful to translate the above discussion
from additive to multiplicative notation. If a group G is written using multi-
plicative notation, then Theorem 6.3 says that (i) ab = ac implies b = c, (ii)
ax = b has a unique solution, (iii) (ab)−1 = a−1b−1, and (iv) (a−1)−1 = a. If
a1, . . . , ak ∈ G, we write their product a1 · · · ak as

∏k
i=1 ai, which is 1G when

k = 0. We have (
∏k

i=1 ai)
−1 =

∏k
i=1 a

−1
i . We also define ak :=

∏k
i=1 a, and

we have (ak)−1 = (a−1)k, which we may write as a−k. Theorem 6.4 says that (i)
(a`)k = ak` = (ak)`, (ii) ak+` = aka`, and (iii) (ab)k = akbk.

An abelian group G may be trivial, meaning that it consists of just the zero
element 0G, with 0G+0G = 0G. An abelian groupG may be infinite or finite: if the
group is finite, we define its order to be the number of elements in the underlying
set G; otherwise, we say that the group has infinite order.

Example 6.15. The order of the additive group Zn is n. If n = 1, then Zn is the
trivial group. 2

Example 6.16. The order of the multiplicative group Z∗n is ϕ(n), where ϕ is Euler’s
phi function, defined in §2.6. 2

Example 6.17. The additive group Z has infinite order. 2

We close this section with two simple constructions for combining groups to
build new groups.

Example 6.18. If G1, . . . ,Gk are abelian groups, we can form the direct product
H := G1 × · · · × Gk, which consists of all k-tuples (a1, . . . , ak) with a1 ∈ G1,
. . . , ak ∈ Gk. We can view H in a natural way as an abelian group if we define the
group operation component-wise:

(a1, . . . , ak) + (b1, . . . , bk) := (a1 + b1, . . . , ak + bk).

Of course, the groupsG1, . . . ,Gk may be different, and the group operation applied
in the ith component corresponds to the group operation associated with Gi. We
leave it to the reader to verify that H is in fact an abelian group, where 0H =
(0G1 , . . . , 0Gk ) and −(a1, . . . , ak) = (−a1, . . . ,−ak). As a special case, if G =
G1 = · · · = Gk, then the k-wise direct product of G is denoted G×k. 2
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Example 6.19. Let G be an abelian group. An element (a1, . . . , ak) of G×k may be
identified with the function f : {1, . . . , k} → G given by f (i) = ai for i = 1, . . . , k.
We can generalize this, replacing {1, . . . , k} by an arbitrary set I . We define
Map(I ,G) to be the set of all functions f : I → G, which we naturally view
as a group by defining the group operation point-wise: for f , g ∈ Map(I ,G), we
define

(f + g)(i) := f (i) + g(i) for all i ∈ I .

Again, we leave it to the reader to verify that Map(I ,G) is an abelian group,
where the identity element is the function that maps each i ∈ I to 0G, and for
f ∈ Map(I ,G), we have (−f )(i) = −(f (i)) for all i ∈ I . 2

EXERCISE 6.1. For a finite abelian group, one can completely specify the group
by writing down the group operation table. For instance, Example 2.7 presented an
addition table for Z6.

(a) Write down group operation tables for the following finite abelian groups:
Z5, Z∗5, and Z3 × Z∗4.

(b) Show that the group operation table for every finite abelian group is a Latin
square; that is, each element of the group appears exactly once in each row
and column.

(c) Below is an addition table for an abelian group that consists of the elements
{a, b, c, d}; however, some entries are missing. Fill in the missing entries.

+ a b c d

a a

b b a

c a

d

EXERCISE 6.2. Let G := {x ∈ R : x > 1}, and define a ? b := ab − a − b + 2 for
all a, b ∈ R. Show that:

(a) G is closed under ?;

(b) the set G under the operation ? forms an abelian group.

EXERCISE 6.3. Let G be an abelian group, and let g be an arbitrary, fixed element
of G. Assume that the group operation of G is written additively. We define a new
binary operation � on G, as follows: for a, b ∈ G, let a� b := a+ b+ g. Show that
the set G under � forms an abelian group.

EXERCISE 6.4. Let G be a finite abelian group of even order. Show that there
exists a ∈ G with a 6= 0G and 2a = 0G.
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EXERCISE 6.5. Let ? be a binary operation on a non-empty, finite set G. Assume
that ? is associative, commutative, and satisfies the cancellation law: a ? b = a ? c

implies b = c. Show that G under ? forms an abelian group.

EXERCISE 6.6. Show that the result of the previous exercise need not hold if G is
infinite.

6.2 Subgroups
We next introduce the notion of a subgroup.

Definition 6.5. Let G be an abelian group, and let H be a non-empty subset of G
such that

(i) a + b ∈ H for all a, b ∈ H , and

(ii) −a ∈ H for all a ∈ H .

Then H is called a subgroup of G.

In words: H is a subgroup of G if it is closed under the group operation and
taking inverses.

Multiplicative notation: if the abelian group G in the above definition is written
using multiplicative notation, then H is a subgroup if ab ∈ H and a−1 ∈ H for all
a, b ∈ H .

Theorem 6.6. If G is an abelian group, and H is a subgroup of G, then H

contains 0G; moreover, the binary operation of G, when restricted to H , yields
a binary operation that makes H into an abelian group whose identity is 0G.

Proof. First, to see that 0G ∈ H , just pick any a ∈ H , and using both properties of
the definition of a subgroup, we see that 0G = a + (−a) ∈ H .

Next, note that by property (i) of Definition 6.5, H is closed under addition,
which means that the restriction of the binary operation “+” on G to H induces a
well-defined binary operation on H . So now it suffices to show that H , together
with this operation, satisfies the defining properties of an abelian group. Associa-
tivity and commutativity follow directly from the corresponding properties for G.
Since 0G acts as the identity on G, it does so on H as well. Finally, property (ii) of
Definition 6.5 guarantees that every element a ∈ H has an inverse in H , namely,
−a. 2

Clearly, for an abelian group G, the subsets G and {0G} are subgroups, though
not very interesting ones. Other, more interesting subgroups may sometimes be
found by using the following two theorems.
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Theorem 6.7. Let G be an abelian group, and let m be an integer. Then

mG := {ma : a ∈ G}

is a subgroup of G.

Proof. The set mG is non-empty, since 0G = m0G ∈ mG. For ma,mb ∈ mG, we
have ma + mb = m(a + b) ∈ mG, and −(ma) = m(−a) ∈ mG. 2

Theorem 6.8. Let G be an abelian group, and let m be an integer. Then

G{m} := {a ∈ G : ma = 0G}

is a subgroup of G.

Proof. The set G{m} is non-empty, since m0G = 0G, and so G{m} contains 0G.
If ma = 0G and mb = 0G, then m(a + b) = ma + mb = 0G + 0G = 0G and
m(−a) = −(ma) = −0G = 0G. 2

Multiplicative notation: if the abelian group G in the above two theorems is
written using multiplicative notation, then we write the subgroup of the first theo-
rem as Gm := {am : a ∈ G}. The subgroup in the second theorem is denoted in the
same way: G{m} := {a ∈ G : am = 1G}.

Example 6.20. We already proved that (Z∗n)m is a subgroup of Z∗n in Theorem 2.16.
Also, the proof of Theorem 2.17 clearly works for an arbitrary abelian group G:
for each a ∈ G, and all `,m ∈ Z with gcd(`,m) = 1, if `a ∈ mG, then a ∈ mG. 2

Example 6.21. Let p be an odd prime. Then by Theorem 2.20, (Z∗p)2 is a subgroup
of Z∗p of order (p − 1)/2, and as we saw in Theorem 2.18, Z∗p{2} = {[±1]}. 2

Example 6.22. For every integerm, the setmZ is the subgroup of the additive group
Z consisting of all multiples of m. This is the same as the ideal of Z generated by
m, which we already studied in some detail in §1.2. Two such subgroups mZ and
m′Z are equal if and only if m = ±m′. The subgroup Z{m} is equal to Z if m = 0,
and is equal to {0} otherwise. 2

Example 6.23. Let n be a positive integer, let m ∈ Z, and consider the subgroup
mZn of the additive group Zn. Now, for every residue class [z] ∈ Zn, we have
m[z] = [mz]. Therefore, [b] ∈ mZn if and only if there exists z ∈ Z such that
mz ≡ b (mod n). By part (i) of Theorem 2.5, such a z exists if and only if d | b,
where d := gcd(m, n). Thus, mZn consists precisely of the n/d distinct residue
classes

[i · d] (i = 0, . . . , n/d − 1),

and in particular, mZn = dZn.
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Now consider the subgroup Zn{m} of Zn. The residue class [z] is in Zn{m} if
and only ifmz ≡ 0 (mod n). By part (ii) of Theorem 2.5, this happens if and only if
z ≡ 0 (mod n/d), where d := gcd(m, n) as above. Thus, Zn{m} consists precisely
of the d residue classes

[i · n/d] (i = 0, . . . , d − 1),

and in particular, Zn{m} = Zn{d} = (n/d)Zn. 2

Example 6.24. For n = 15, consider again the table in Example 2.2. For m = 1,
2, 3, 4, 5, 6, the elements appearing in the mth row of that table form the subgroup
mZn of Zn, and also the subgroup Zn{n/d}, where d := gcd(m, n). 2

Because the abelian groups Z and Zn are of such importance, it is a good idea
to completely characterize all subgroups of these abelian groups. As the following
two theorems show, the subgroups in Examples 6.22 and 6.23 are the only ones.

Theorem 6.9. If G is a subgroup of Z, then there exists a unique non-negative
integer m such that G = mZ. Moreover, for two non-negative integers m1 and m2,
we have m1Z ⊆ m2Z if and only if m2 | m1.

Proof. Actually, we have already proven this. One only needs to observe that a
subset G of Z is a subgroup if and only if it is an ideal of Z, as defined in §1.2
(see Exercise 1.8). The first statement of the theorem then follows from Theo-
rem 1.6. The second statement follows easily from the definitions, as was observed
in §1.2. 2

Theorem 6.10. If G is a subgroup of Zn, then there exists a unique positive integer
d dividing n such that G = dZn. Also, for all positive divisors d1, d2 of n, we have
d1Zn ⊆ d2Zn if and only if d2 | d1.

Proof. Note that the second statement implies the uniqueness part of the first state-
ment, so it suffices to prove just the existence part of the first statement and the
second statement.

Let G be an arbitrary subgroup of Zn, and let H := {z ∈ Z : [z] ∈ G}. We
claim that H is a subgroup of Z. To see this, observe that if a, b ∈ H , then [a] and
[b] belong to G, and hence so do [a + b] = [a] + [b] and [−a] = −[a], and thus
a + b and −a belong to H . That proves the claim, and Theorem 6.9 implies that
H = dZ for some non-negative integer d. It follows that

G = {[y] : y ∈ H} = {[dz] : z ∈ Z} = dZn.

Evidently, n ∈ H = dZ, and hence d | n. That proves the existence part of the first
statement of the theorem.
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To prove the second statement of the theorem, observe that if d1 and d2 are
arbitrary integers, then

d1Zn ⊆ d2Zn ⇐⇒ d2z ≡ d1 (mod n) for some z ∈ Z
⇐⇒ gcd(d2, n) | d1 (by part (i) of Theorem 2.5).

In particular, if d2 is a positive divisor of n, then gcd(d2, n) = d2, which proves the
second statement. 2

Of course, not all abelian groups have such a simple subgroup structure.

Example 6.25. Consider the group G = Z2 × Z2. For every non-zero α ∈ G,
α + α = 0G. From this, it is clear that the set H = {0G, α} is a subgroup of G.
However, for every integer m, mG = G if m is odd, and mG = {0G} if m is even.
Thus, the subgroup H is not of the form mG for any m. 2

Example 6.26. Consider the group Z∗15. We can enumerate its elements as

[±1], [±2], [±4], [±7].

Therefore, the elements of (Z∗15)2 are

[1]2 = [1], [2]2 = [4], [4]2 = [16] = [1], [7]2 = [49] = [4];

thus, (Z∗15)2 has order 2, consisting as it does of the two distinct elements [1] and
[4].

Going further, one sees that (Z∗15)4 = {[1]}. Thus, α4 = [1] for all α ∈ Z∗15.
By direct calculation, one can determine that (Z∗15)3 = Z∗15; that is, cubing sim-

ply permutes Z∗15.
For any given integer m, write m = 4q + r, where 0 ≤ r < 4. Then for every

α ∈ Z∗15, we have αm = α4q+r = α4qαr = αr. Thus, (Z∗15)m is either Z∗15, (Z∗15)2, or
{[1]}.

However, there are certainly other subgroups of Z∗15 —for example, the subgroup
{[±1]}. 2

Example 6.27. Consider the group Z∗5 = {[±1], [±2]}. The elements of (Z∗5)2 are

[1]2 = [1], [2]2 = [4] = [−1];

thus, (Z∗5)2 = {[±1]} and has order 2.
There are in fact no other subgroups of Z∗5 besides Z∗5, {[±1]}, and {[1]}.

Indeed, if H is a subgroup containing [2], then we must have H = Z∗5: [2] ∈ H
implies [2]2 = [4] = [−1] ∈ H , which implies [−2] ∈ H as well. The same holds
if H is a subgroup containing [−2]. 2
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Example 6.28. Consider again the abelian group F∗ of arithmetic functions f ,
such that f (1) 6= 0, and with the Dirichlet product as the binary operation, as
discussed in Example 6.11. Exercises 2.48 and 2.55 imply that the subset of all
multiplicative functions is a subgroup. 2

We close this section with two theorems that provide useful ways to build new
subgroups out of old ones.

Theorem 6.11. If H1 and H2 are subgroups of an abelian group G, then so is

H1 +H2 := {a1 + a2 : a1 ∈ H1, a2 ∈ H2}.

Proof. It is evident that H1 + H2 is non-empty, as it contains 0G + 0G = 0G.
Consider two elements in H1 + H2, which we can write as a1 + a2 and b1 + b2,
where a1, b1 ∈ H1 and a2, b2 ∈ H2. Then by the closure properties of subgroups,
a1+b1 ∈ H1 and a2+b2 ∈ H2, and hence (a1+a2)+(b1+b2) = (a1+b1)+(a2+b2) ∈
H1 +H2. Similarly, −(a1 + a2) = (−a1) + (−a2) ∈ H1 +H2. 2

Multiplicative notation: if the abelian group G in the above theorem is written
multiplicatively, then the subgroup defined in the theorem is written H1H2 :=
{a1a2 : a1 ∈ H1, a2 ∈ H2}.

Theorem 6.12. If H1 and H2 are subgroups of an abelian group G, then so is
H1 ∩H2.

Proof. It is evident that H1 ∩ H2 is non-empty, as both H1 and H2 contain 0G,
and hence so does their intersection. If a ∈ H1 ∩ H2 and b ∈ H1 ∩ H2, then
since a, b ∈ H1, we have a + b ∈ H1, and since a, b ∈ H2, we have a + b ∈ H2;
therefore, a + b ∈ H1 ∩ H2. Similarly, −a ∈ H1 and −a ∈ H2, and therefore,
−a ∈ H1 ∩H2. 2

Let G be an abelian group and H1,H2,H3 subgroups of G. The reader may
verify thatH1+H2 = H2+H1 and (H1+H2)+H3 = H1+ (H2+H3). It follows
that if H1, . . . ,Hk are subgroups of G, then we can write H1 + · · · +Hk without
any parentheses, and there can be no ambiguity; moreover, the order of the Hi’s
does not matter. The same holds with “+” replaced by “∩.”

A warning: If H is a subgroup of an abelian group G, then in general, we have
H +H 6= 2H . For example, Z + Z = Z, while 2Z 6= Z.

EXERCISE 6.7. Let G be an abelian group.

(a) Suppose that H is a non-empty subset of G. Show that H is a subgroup of
G if and only if a − b ∈ H for all a, b ∈ H .
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(b) Suppose that H is a non-empty, finite subset of G such that a + b ∈ H for
all a, b ∈ H . Show that H is a subgroup of G.

EXERCISE 6.8. Let G be an abelian group.

(a) Show that if H is a subgroup of G, h ∈ H , and g ∈ G \ H , then
h + g ∈ G \H .

(b) Suppose that H is a non-empty subset of G such that for all h, g ∈ G: (i)
h ∈ H implies−h ∈ H , and (ii) h ∈ H and g ∈ G\H implies h+g ∈ G\H .
Show that H is a subgroup of G.

EXERCISE 6.9. Show that if H is a subgroup of an abelian group G, then a set
K ⊆ H is a subgroup of G if and only if K is a subgroup of H .

EXERCISE 6.10. Let G be an abelian group with subgroups H1 and H2. Show
that every subgroup H of G that contains H1 ∪H2 must contain all of H1 +H2,
and that H1 ⊆ H2 if and only if H1 +H2 = H2.

EXERCISE 6.11. LetH1 be a subgroup of an abelian groupG1 andH2 a subgroup
of an abelian group G2. Show that H1 ×H2 is a subgroup of G1 × G2.

EXERCISE 6.12. Show that if G1 and G2 are abelian groups, and m is an integer,
then m(G1 × G2) = mG1 × mG2.

EXERCISE 6.13. Let G1 and G2 be abelian groups, and let H be a subgroup of
G1 × G2. Define

H1 := {a1 ∈ G1 : (a1, a2) ∈ H for some a2 ∈ G2}.

Show that H1 is a subgroup of G1.

EXERCISE 6.14. Let I be a set and G be an abelian group, and consider the
group Map(I ,G) of functions f : I → G. Let Map#(I ,G) be the set of functions
f ∈ Map(I ,G) such that f (i) 6= 0G for at most finitely many i ∈ I . Show that
Map#(I ,G) is a subgroup of Map(I ,G).

6.3 Cosets and quotient groups
We now generalize the notion of a congruence relation.

Let G be an abelian group, and let H be a subgroup of G. For a, b ∈ G, we
write a ≡ b (mod H) if a − b ∈ H . In other words, a ≡ b (mod H) if and only if
a = b + h for some h ∈ H .

Analogous to Theorem 2.2, if we view the subgroup H as fixed, then the fol-
lowing theorem says that the binary relation “· ≡ · (mod H)” is an equivalence
relation on the set G:
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Theorem 6.13. Let G be an abelian group and H a subgroup of G. For all
a, b, c ∈ G, we have:

(i) a ≡ a (mod H);

(ii) a ≡ b (mod H) implies b ≡ a (mod H);

(iii) a ≡ b (mod H) and b ≡ c (mod H) implies a ≡ c (mod H).

Proof. For (i), observe that H contains 0G = a − a. For (ii), observe that if H
contains a − b, then it also contains −(a − b) = b − a. For (iii), observe that if H
contains a − b and b − c, then it also contains (a − b) + (b − c) = a − c. 2

Since the binary relation “· ≡ · (mod H)” is an equivalence relation, it parti-
tions G into equivalence classes (see Theorem 2.1). For a ∈ G, we denote the
equivalence class containing a by [a]H . By definition, we have

x ∈ [a]H ⇐⇒ x ≡ a (mod H) ⇐⇒ x = a + h for some h ∈ H ,

and hence

[a]H = a +H := {a + h : h ∈ H}.

It is also clear that [0G]H = H .
Historically, these equivalence classes are called cosets of H in G, and we shall

adopt this terminology here as well. Any member of a coset is called a represen-
tative of the coset.

Multiplicative notation: if G is written multiplicatively, then a ≡ b (mod H)
means ab−1 ∈ H , and [a]H = aH := {ah : h ∈ H}.

Example 6.29. Let G := Z and H := nZ for some positive integer n. Then
a ≡ b (mod H) if and only if a ≡ b (mod n). The coset [a]H is exactly the same
thing as the residue class [a]n ∈ Zn. 2

Example 6.30. Let G := Z6, which consists of the residue classes [0], [1], [2], [3],
[4], [5]. Let H be the subgroup 3G = {[0], [3]} of G. The coset of H containing
the residue class [1] is [1] + H = {[1], [4]}, and the coset of H containing the
residue class [2] is [2] + H = {[2], [5]}. The cosets {[0], [3]}, {[1], [4]}, and
{[2], [5]} are the only cosets of H in G, and they clearly partition the set Z6. Note
that each coset of H in G contains two elements, each of which is itself a coset of
6Z in Z (i.e., a residue classes modulo 6). 2

In the previous example, we saw that each coset contained the same number of
elements. As the next theorem shows, this was no accident.
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Theorem 6.14. Let G be an abelian group and H a subgroup of G. For all
a, b ∈ G, the function

f : G → G

x 7→ b − a + x

is a bijection, which, when restricted to the coset [a]H , yields a bijection from
[a]H to the coset [b]H . In particular, every two cosets of H in G have the same
cardinality.

Proof. First, we claim that f is a bijection. Indeed, if f (x) = f (x′), then
b− a+x = b− a+x′, and subtracting b and adding a to both sides of this equation
yields x = x′. That proves that f is injective. To prove that f is surjective, observe
that for any given x′ ∈ G, we have f (a − b + x′) = x′.

Second, we claim that for all x ∈G, we have x ∈ [a]H if and only if f (x) ∈ [b]H .
On the one hand, suppose that x ∈ [a]H , which means that x= a+h for some h ∈H .
Subtracting a and adding b to both sides of this equation yields b − a + x = b + h,
which means f (x) ∈ [b]H . Conversely, suppose that f (x) ∈ [b]H , which means
that b− a+ x = b+ h for some h ∈ H . Subtracting b and adding a to both sides of
this equation yields x = a + h, which means that x ∈ [a]H .

The theorem is now immediate from these two claims. 2

An incredibly useful consequence of the above theorem is:

Theorem 6.15 (Lagrange’s theorem). If G is a finite abelian group, and H is a
subgroup of G, then the order of H divides the order of G.

Proof. This is an immediate consequence of the previous theorem, and the fact that
the cosets of H in G partition G. 2

Analogous to Theorem 2.3, we have:

Theorem 6.16. Suppose G is an abelian group and H is a subgroup of G. For
all a, a′, b, b′ ∈ G, if a ≡ a′ (mod H) and b ≡ b′ (mod H), then we have
a + b ≡ a′ + b′ (mod H).

Proof. Now, a ≡ a′ (mod H) and b ≡ b′ (mod H) means that a = a′ + x and
b = b′+y for some x, y ∈ H . Therefore, a+b = (a′+x)+(b′+y) = (a′+b′)+(x+y),
and since x + y ∈ H , this means that a + b ≡ a′ + b′ (mod H). 2

Let G be an abelian group and H a subgroup. Let G/H denote the set of all
cosets of H in G. Theorem 6.16 allows us to define a binary operation on G/H in
the following natural way: for a, b ∈ G, define

[a]H + [b]H := [a + b]H .
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That this definition is unambiguous follows immediately from Theorem 6.16: if
[a]H = [a′]H and [b]H = [b′]H , then [a + b]H = [a′ + b′]H .

We can easily verify that this operation makes G/H into an abelian group. We
need to check that the four properties of Definition 6.1 are satisfied:

(i) Associativity:

[a]H + ([b]H + [c]H ) = [a]H + [b + c]H = [a + (b + c)]H
= [(a + b) + c]H = [a + b]H + [c]H
= ([a]H + [b]H ) + [c]H .

Here, we have used the definition of addition of cosets, and the correspond-
ing associativity property for G.

(ii) Identity element: the coset [0G]H = H acts as the identity element, since

[a]H + [0G]H = [a + 0G]H = [a]H = [0G + a]H = [0G]H + [a]H .

(iii) Inverses: the inverse of the coset [a]H is [−a]H , since

[a]H + [−a]H = [a + (−a)]H = [0G]H = [(−a) + a]H = [−a]H + [a]H .

(iv) Commutativity:

[a]H + [b]H = [a + b]H = [b + a]H = [b]H + [a]H .

The group G/H is called the quotient group of G modulo H . The order of
the group G/H is sometimes denoted [G : H] and is called the index of H in
G. Note that if H = G, then the quotient group G/H is the trivial group, and so
[G : H] = 1.

Multiplicative notation: ifG is written multiplicatively, then the definition of the
group operation of G/H is expressed [a]H · [b]H := [a · b]H ; the identity element
of G/H is [1G]H = H , and the inverse of [a]H is [a−1]H .

Theorem 6.17. Suppose G is a finite abelian group and H is a subgroup of G.
Then [G : H] = |G|/|H |. Moreover, if K is a subgroup of H , then

[G : K] = [G : H][H : K].

Proof. The fact that [G : H] = |G|/|H | follows directly from Theorem 6.14. The
fact that [G : K] = [G : H][H : K] follows from a simple calculation:

[G : H] =
|G|
|H |

=
|G|/|K|
|H |/|K|

=
[G : K]
[H : K]

. 2

Example 6.31. For each n ≥ 1, the group Zn is precisely the quotient group
Z/nZ. 2
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Example 6.32. Continuing with Example 6.30, let G := Z6 and H := 3G =
{[0], [3]}. The quotient group G/H has order 3, and consists of the cosets

α := {[0], [3]}, β := {[1], [4]}, γ := {[2], [5]}.

If we write out an addition table for G, grouping together elements in cosets of H
in G, then we also get an addition table for the quotient group G/H:

+ [0] [3] [1] [4] [2] [5]
[0] [0] [3] [1] [4] [2] [5]
[3] [3] [0] [4] [1] [5] [2]
[1] [1] [4] [2] [5] [3] [0]
[4] [4] [1] [5] [2] [0] [3]
[2] [2] [5] [3] [0] [4] [1]
[5] [5] [2] [0] [3] [1] [4]

This table illustrates quite graphically the point of Theorem 6.16: for every two
cosets, if we take any element from the first and add it to any element of the second,
we always end up in the same coset.

We can also write down just the addition table for G/H:

+ α β γ

α α β γ

β β γ α

γ γ α β

Note that by replacing α with [0]3, β with [1]3, and γ with [2]3, the addition table
for G/H becomes the addition table for Z3. In this sense, we can view G/H as
essentially just a “renaming” of Z3. 2

Example 6.33. Let us return to Example 6.26. The multiplicative group Z∗15, as we
saw, is of order 8. The subgroup (Z∗15)2 of Z∗15 has order 2. Therefore, the quotient
group Z∗15/(Z∗15)2 has order 4. Indeed, the cosets are

α00 := (Z∗15)2 = {[1], [4]}, α01 := [−1](Z∗15)2 = {[−1], [−4]},
α10 := [2](Z∗15)2 = {[2], [−7]}, α11 := [−2](Z∗15)2 = {[−2], [7]}.

We can write down the multiplication table for the quotient group:

· α00 α01 α10 α11

α00 α00 α01 α10 α11

α01 α01 α00 α11 α10

α10 α10 α11 α00 α01

α11 α11 α10 α01 α00

Note that this group is essentially just a “renaming” of the additive group Z2×Z2. 2
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Example 6.34. As we saw in Example 6.27, (Z∗5)2 = {[±1]}. Therefore, the
quotient group Z∗5/(Z∗5)2 has order 2. The cosets of (Z∗5)2 in Z∗5 are α0 := {[±1]}
and α1 := {[±2]}, and the multiplication table looks like this:

· α0 α1

α0 α0 α1

α1 α1 α0

We see that the quotient group is essentially just a “renaming” of Z2. 2

EXERCISE 6.15. Write down the cosets of (Z∗35)2 in Z∗35, along with the multipli-
cation table for the quotient group Z∗35/(Z∗35)2.

EXERCISE 6.16. Let n be an odd, positive integer whose factorization into primes
is n = p

e1
1 · · · p

er
r . Show that [Z∗n : (Z∗n)2] = 2r.

EXERCISE 6.17. Let n be a positive integer, and let m be any integer. Show that
[Zn : mZn] = n/ gcd(m, n).

EXERCISE 6.18. Let G be an abelian group and H a subgroup with [G : H] = 2.
Show that if a, b ∈ G \H , then a + b ∈ H .

EXERCISE 6.19. Let H be a subgroup of an abelian group G, and let a, b ∈ G
with a ≡ b (mod H). Show that ka ≡ kb (mod H) for all k ∈ Z.

EXERCISE 6.20. Let G be an abelian group, and let ∼ be an equivalence relation
on G. Further, suppose that for all a, a′, b ∈ G, if a ∼ a′, then a + b ∼ a′ + b. Let
H := {a ∈ G : a ∼ 0G}. Show thatH is a subgroup of G, and that for all a, b ∈ G,
we have a ∼ b if and only if a ≡ b (mod H).

EXERCISE 6.21. Let H be a subgroup of an abelian group G, and let a, b ∈ G.
Show that [a + b]H = {x + y : x ∈ [a]H , y ∈ [b]H}.

6.4 Group homomorphisms and isomorphisms
In this section, we study maps that relate the structure of one group to another. Such
maps are often very useful, as they may allow us to transfer hard-won knowledge
about one group to another, perhaps more mysterious, group.

Definition 6.18. A group homomorphism is a function ρ from an abelian group
G to an abelian group G′ such that ρ(a + b) = ρ(a) + ρ(b) for all a, b ∈ G.

Note that in the equality ρ(a + b) = ρ(a) + ρ(b) in the above definition, the
addition on the left-hand side is taking place in the group G while the addition on
the right-hand side is taking place in the group G′.
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Two sets play a critical role in the study of a group homomorphism ρ : G → G′.
The first set is the image of ρ, that is, the set ρ(G) = {ρ(a) : a ∈ G}. The second
set is the kernel of ρ, defined as the set of all elements of G that are mapped to
0G′ by ρ, that is, the set ρ−1({0G′}) = {a ∈ G : ρ(a) = 0G′}. We introduce the
following notation for these sets: Im ρ denotes the image of ρ, and Ker ρ denotes
the kernel of ρ.

Example 6.35. If H is a subgroup of an abelian group G, then the inclusion map
i : H → G is obviously a group homomorphism. 2

Example 6.36. Suppose H is a subgroup of an abelian group G. We define the
map

ρ : G → G/H

a 7→ [a]H .

It is not hard to see that this is a group homomorphism. Indeed, this follows almost
immediately from the way we defined addition in the quotient group G/H:

ρ(a + b) = [a + b]H = [a]H + [b]H = ρ(a) + ρ(b).

It is clear that ρ is surjective. It is also not hard to see that Ker ρ = H; indeed, H
is the identity element in G/H , and [a]H = H if and only if a ∈ H . The map ρ is
called the natural map from G to G/H . 2

Example 6.37. For a given positive integer n, the natural map from Z to Zn sends
a ∈ Z to the residue class [a]n. This map is a surjective group homomorphism with
kernel nZ. 2

Example 6.38. Suppose G is an abelian group and m is an integer. The map

ρ : G → G

a 7→ ma

is a group homomorphism, since

ρ(a + b) = m(a + b) = ma + mb = ρ(a) + ρ(b).

The image of this homomorphism is the subgroup mG and the kernel is the sub-
group G{m}. We call this map the m-multiplication map on G. If G is written
multiplicatively, then this map, which sends a ∈ G to am ∈ G, is called the m-
power map on G, and its image is Gm. 2

Example 6.39. Let p be an odd prime. Consider the 2-power, or squaring, map on
Z∗p. Then as we saw in Example 6.21, the image (Z∗p)2 of this map is a subgroup
of Z∗p of order (p − 1)/2, and its kernel is Z∗p{2} = {[±1]}. 2
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Example 6.40. Consider the m-multiplication map on Z. As we saw in Exam-
ple 6.22, its image mZ is equal to Z if and only if m = ±1, while its kernel Z{m}
is equal to Z if m = 0, and is equal to {0} otherwise. 2

Example 6.41. Consider the m-multiplication map on Zn. As we saw in Exam-
ple 6.23, if d := gcd(m, n), the image mZn of this map is a subgroup of Zn of order
n/d, while its kernel Zn{m} is a subgroup of order d. 2

Example 6.42. Suppose G is an abelian group and a is an element of G. It is easy
to see that the map

ρ : Z→ G

z 7→ za

is a group homomorphism, since

ρ(z + z′) = (z + z′)a = za + z′a = ρ(z) + ρ(z′). 2

Example 6.43. As a special case of the previous example, let n be a positive integer
and let α be an element of Z∗n. Let ρ : Z → Z∗n be the group homomorphism that
sends z ∈ Z to αz ∈ Z∗n. That ρ is a group homomorphism means that αz+z

′
= αzαz

′

for all z, z′ ∈ Z (note that the group operation is addition in Z and multiplication
in Z∗n). If the multiplicative order of α is equal to k, then as discussed in §2.7, the
image of ρ consists of the k distinct group elements α0, α1, . . . , αk−1. The kernel
of ρ consists of those integers z such that αz = 1. Again by the discussion in §2.7,
the kernel of ρ is equal to the subgroup kZ. 2

Example 6.44. Generalizing Example 6.42, the reader may verify that if a1, . . . , ak
are fixed elements of an abelian group G, then the map

ρ : Z×k → G

(z1, . . . , zk) 7→ z1a1 + · · · + zkak
is a group homomorphism. 2

Example 6.45. Suppose thatH1, . . . ,Hk are subgroups of an abelian groupG. The
reader may easily verify that the map

ρ : H1 × · · · ×Hk → G

(a1, . . . , ak) 7→ a1 + · · · + ak
is a group homomorphism whose image is the subgroup H1 + · · · +Hk. 2

The following theorem summarizes some of the most important properties of
group homomorphisms.
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Theorem 6.19. Let ρ be a group homomorphism from G to G′. Then:

(i) ρ(0G) = 0G′ ;

(ii) ρ(−a) = −ρ(a) for all a ∈ G;

(iii) ρ(na) = nρ(a) for all n ∈ Z and a ∈ G;

(iv) if H is a subgroup of G, then ρ(H) is a subgroup of G′; in particular
(setting H := G), Im ρ is a subgroup of G′;

(v) if H ′ is a subgroup of G′, then ρ−1(H ′) is a subgroup of G; in particular
(setting H ′ := {0G′}), Ker ρ is a subgroup of G;

(vi) for all a, b ∈ G, ρ(a) = ρ(b) if and only if a ≡ b (mod Ker ρ);

(vii) ρ is injective if and only if Ker ρ = {0G}.

Proof. These are all straightforward calculations.

(i) We have

0G′ + ρ(0G) = ρ(0G) = ρ(0G + 0G) = ρ(0G) + ρ(0G).

Now cancel ρ(0G) from both sides.

(ii) We have

0G′ = ρ(0G) = ρ(a + (−a)) = ρ(a) + ρ(−a),

and hence ρ(−a) is the inverse of ρ(a).

(iii) For n = 0, this follows from part (i). For n > 0, this follows from the
definitions by induction on n. For n < 0, this follows from the positive case
and part (ii).

(iv) For all a, b ∈ H , we have a + b ∈ H and −a ∈ H; hence, ρ(H) contains
ρ(a + b) = ρ(a) + ρ(b) and ρ(−a) = −ρ(a).

(v) ρ−1(H ′) is non-empty, since ρ(0G) = 0′G ∈ H ′. If ρ(a) ∈ H ′ and
ρ(b) ∈ H ′, then ρ(a + b) = ρ(a) + ρ(b) ∈ H ′, and ρ(−a) = −ρ(a) ∈ H ′.

(vi) We have

ρ(a) = ρ(b) ⇐⇒ ρ(a) − ρ(b) = 0G′ ⇐⇒ ρ(a − b) = 0G′

⇐⇒ a − b ∈ Ker ρ ⇐⇒ a ≡ b (mod Ker ρ).

(vii) If ρ is injective, then in particular, ρ−1({0G′}) cannot contain any other ele-
ment besides 0G. If ρ is not injective, then there exist two distinct elements
a, b ∈ G with ρ(a) = ρ(b), and by part (vi), Ker ρ contains the element
a − b, which is non-zero. 2

Part (vii) of the above theorem is particularly useful: to check that a group
homomorphism is injective, it suffices to determine if Ker ρ = {0G}. Thus, the
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injectivity and surjectivity of a given group homomorphism ρ : G → G′ may be
characterized in terms of its kernel and image:

• ρ is injective if and only if its kernel is trivial (i.e. Ker ρ = {0G});
• ρ is surjective if and only if Im ρ = G′.

We next present two very easy theorems that allow us to compose group homo-
morphisms in simple ways.

Theorem 6.20. If ρ : G → G′ and ρ′ : G′ → G′′ are group homomorphisms, then
so is their composition ρ′ ◦ ρ : G → G′′.

Proof. For all a, b ∈ G, we have

ρ′(ρ(a + b)) = ρ′(ρ(a) + ρ(b)) = ρ′(ρ(a)) + ρ′(ρ(b)). 2

Theorem 6.21. Let ρi : G → G′i, for i = 1, . . . , k, be group homomorphisms.
Then the map

ρ : G → G′1 × · · · × G
′
k

a 7→ (ρ1(a), . . . , ρk(a))

is a group homomorphism.

Proof. For all a, b ∈ G, we have

ρ(a + b) = (ρ1(a + b), . . . , ρk(a + b)) = (ρ1(a) + ρ1(b), . . . , ρk(a) + ρk(b))

= ρ(a) + ρ(b). 2

Consider a group homomorphism ρ : G → G′. If ρ is bijective, then ρ is called
a group isomorphism of G with G′. If such a group isomorphism ρ exists, we say
that G is isomorphic to G′, and write G ∼= G′. Moreover, if G = G′, then ρ is
called a group automorphism on G.

Theorem 6.22. If ρ is a group isomorphism of G with G′, then the inverse func-
tion ρ−1 is a group isomorphism of G′ with G.

Proof. For all a′, b′ ∈ G′, we have

ρ(ρ−1(a′) + ρ−1(b′)) = ρ(ρ−1(a′)) + ρ(ρ−1(b′)) = a′ + b′,

and hence ρ−1(a′) + ρ−1(b′) = ρ−1(a′ + b′). 2

Because of this theorem, if G is isomorphic to G′, we may simply say that “G
and G′ are isomorphic.”

We stress that a group isomorphism ρ : G → G′ is essentially just a “renaming”
of the group elements. This can be visualized as follows. Imagine the addition
table for G written out with rows and columns labeled by elements of G, with the



6.4 Group homomorphisms and isomorphisms 147

entry in row a and column b being a + b. Now suppose we use the function ρ
to consistently rename all the elements of G appearing in this table: the label on
row a is replaced by ρ(a), the label on column b by ρ(b), and the entry in row a

and column b by ρ(a + b). Because ρ is bijective, every element of G′ appears
exactly once as a label on a row and as a label on a column; moreover, because
ρ(a + b) = ρ(a) + ρ(b), what we end up with is an addition table for G′. It follows
that all structural properties of the group are preserved, even though the two groups
might look quite different syntactically.

Example 6.46. As was shown in Example 6.32, the quotient groupG/H discussed
in that example is isomorphic to Z3. As was shown in Example 6.33, the quotient
group Z∗15/(Z∗15)2 is isomorphic to Z2 × Z2. As was shown in Example 6.34, the
quotient group Z∗5/(Z∗5)2 is isomorphic to Z2. 2

Example 6.47. If gcd(m, n) = 1, then the m-multiplication map on Zn is a group
automorphism. 2

The next theorem tells us that corresponding to any group homomorphism, there
is a natural group isomomorphism. As group isomorphisms are much nicer than
group homomorphisms, this is often very useful.

Theorem 6.23 (First isomorphism theorem). Let ρ : G → G′ be a group homo-
morphism with kernel K and image H ′. Then we have a group isomorphism

G/K ∼= H ′.

Specifically, the map

ρ : G/K → G′

[a]K 7→ ρ(a)

is an injective group homomorphism whose image is H ′.

Proof. Using part (vi) of Theorem 6.19, we see that for all a, b ∈ G, we have

[a]K = [b]K ⇐⇒ a ≡ b (mod K) ⇐⇒ ρ(a) = ρ(b).

This immediately implies that the definition of ρ is unambiguous ([a]K = [b]K
implies ρ(a) = ρ(b)), and that ρ is injective (ρ(a) = ρ(b) implies [a]K = [b]K ).
It is clear that ρ maps onto H ′, since every element of H ′ is of the form ρ(a) for
some a ∈ G, and the map ρ sends [a]K to ρ(a). Finally, to see that ρ is a group
homomorphism, note that

ρ([a]K + [b]K ) = ρ([a + b]K ) = ρ(a + b) = ρ(a) + ρ(b) = ρ([a]K ) + ρ([b]K ). 2

We can generalize the previous theorem, as follows:
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Theorem 6.24. Let ρ : G → G′ be a group homomorphism. Then for every
subgroup H of G with H ⊆ Ker ρ, we may define a group homomorphism

ρ : G/H → G′

[a]H 7→ ρ(a).

Moreover, Im ρ = Im ρ, and ρ is injective if and only if H = Ker ρ.

Proof. Using the assumption that H ⊆ Ker ρ, we see that ρ is unambiguously
defined, since for all a, b ∈ G, we have

[a]H = [b]H =⇒ a ≡ b (mod H) =⇒ a ≡ b (mod Ker ρ) =⇒ ρ(a) = ρ(b).

That ρ is a group homomorphism, with Im ρ = Im ρ, follows as in the proof of The-
orem 6.23. If H = Ker ρ, then by Theorem 6.23, ρ is injective, and if H ( Ker ρ,
then ρ is not injective, since if we choose a ∈ Ker ρ\H , we see that ρ([a]H ) = 0G′ ,
and hence Ker ρ is non-trivial. 2

The next theorem gives us another important construction of a group isomor-
phism.

Theorem 6.25 (Internal direct product). Let G be an abelian group with sub-
groups H1,H2, where H1 ∩H2 = {0G}. Then we have a group isomorphism

H1 ×H2
∼= H1 +H2

given by the map

ρ : H1 ×H2 → H1 +H2

(a1, a2) 7→ a1 + a2.

Proof. We already saw that ρ is a surjective group homomorphism in Example 6.45.
To see that ρ is injective, it suffices to show that Ker ρ is trivial; that is, it suffices
to show that for all a1 ∈ H1 and a2 ∈ H2, if a1 + a2 = 0G, then a1 = a2 = 0G. But
a1 + a2 = 0G implies a1 = −a2 ∈ H2, and hence a1 ∈ H1 ∩H2 = {0G}, and so
a1 = 0G. Similarly, one shows that a2 = 0G, and that finishes the proof. 2

If H1,H2 are as in the above theorem, then H1 + H2 is sometimes called the
internal direct product of H1 and H2.

Example 6.48. We can use the general theory developed so far to get a quick-
and-dirty proof of the Chinese remainder theorem (Theorem 2.6). Let {ni}ki=1 be a
pairwise relatively prime family of positive integers, and let n :=

∏k
i=1 ni. Consider

the map

ρ : Z→ Zn1 × · · · × Znk
a 7→ ([a]n1 , . . . , [a]nk ).
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It is easy to see that this map is a group homomorphism; indeed, it is the map
constructed in Theorem 6.21 applied with the natural maps ρi : Z → Zni , for
i = 1, . . . , k. Evidently, a ∈ Ker ρ if and only if ni | a for i = 1, . . . , k, and since
{ni}ki=1 is pairwise relatively prime, it follows that a ∈ Ker ρ if and only if n | a;
that is, Ker ρ = nZ. Theorem 6.23 then gives us an injective group homomorphism

ρ : Zn → Zn1 × · · · × Znk
[a]n 7→ ([a]n1 , . . . , [a]nk ).

But since the sets Zn and Zn1 × · · · × Znk have the same size, injectivity implies
surjectivity. From this, Theorem 2.6 is immediate.

The map ρ is a group isomorphism

Zn ∼= Zn1 × · · · × Znk .

In fact, the map ρ is the same as the map θ in Theorem 2.8, and so we also imme-
diately obtain parts (i), (ii), (iii.a), and (iii.b) of that theorem.

Observe that parts (iii.c) and (iii.d) of Theorem 2.8 imply that restricting the
map θ to Z∗n yields an isomorphism of multiplicative groups

Z∗n ∼= Z∗n1
× · · · × Z∗nk .

This fact does not follow from the general theory developed so far; however, in the
next chapter, we will see how this fact fits into the broader algebraic picture.

One advantage of our original proof of Theorem 2.6 is that it gives us an explicit
formula for the inverse map θ−1, which is useful in computations. 2

Example 6.49. Let n1, n2 be positive integers with n1 | n2. Consider the natural
map ρ : Z → Zn1 . This is a surjective group homomorphism with Ker ρ = n1Z.
Since H := n2Z ⊆ n1Z, we may apply Theorem 6.24 with the subgroup H ,
obtaining the surjective group homomorphism

ρ : Zn2 → Zn1

[a]n2 7→ [a]n1 . 2

Example 6.50. Let us revisit Example 6.23. Let n be a positive integer, and let m
be any integer. Let ρ1 : Z → Zn be the natural map, and let ρ2 : Zn → Zn be
the m-multiplication map. The composed map ρ := ρ2 ◦ ρ1 from Z to Zn is also
a group homomorphism. For each z ∈ Z, we have ρ(z) = m[z]n = [mz]n. The
kernel of ρ consists of those integers z such that mz ≡ 0 (mod n), and so part (ii)
of Theorem 2.5 implies that Ker ρ = (n/d)Z, where d := gcd(m, n). The image of
ρ is mZn. Theorem 6.23 therefore implies that the map

ρ : Zn/d → mZn
[z]n/d 7→ m[z]n
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is a group isomorphism. 2

Example 6.51. Consider the group Z∗p where p is an odd prime, and let ρ : Z∗p → Z∗p
be the squaring map. By definition, Im ρ = (Z∗p)2, and we proved in Theorem 2.18
that Ker ρ = {[±1]}. Theorem 2.19 says that for all γ, β ∈ Z∗p, γ2 = β2 if
and only if γ = ±β. This fact can also be seen to be a special case of part
(vi) of Theorem 6.19. Theorem 6.23 says that Z∗p/Ker ρ ∼= Im ρ, and since
|Z∗p/Ker ρ| = |Z∗p|/|Ker ρ| = (p − 1)/2, we see that Theorem 2.20, which says
that |(Z∗p)2| = (p − 1)/2, follows from this.

Let H := (Z∗p)2, and consider the quotient group Z∗p/H . Since |H | = (p−1)/2,
we know that |Z∗p/H | = |Z∗p|/|H | = 2, and hence Z∗p/H consists of the two cosets
H and H := Z∗p \H .

Let α be an arbitrary, fixed element of H , and consider the map

τ : Z→ Z∗p/H
z 7→ [αz]H .

It is easy to see that τ is a group homomorphism; indeed, it is the composition
of the homomorphism discussed in Example 6.43 and the natural map from Z∗p to
Z∗p/H . Moreover, it is easy to see (for example, as a special case of Theorem 2.17)
that

αz ∈ H ⇐⇒ z is even.

From this, it follows that Ker τ = 2Z; also, since Z∗p/H consists of just the two
cosets H and H , it follows that τ is surjective. Therefore, Theorem 6.23 says that
the map

τ : Z2 → Z∗p/H
[z]2 7→ [αz]H

is a group isomorphism, under which [0]2 corresponds to H , and [1]2 corresponds
to H .

This isomorphism gives another way to derive Theorem 2.23, which says that
in Z∗p, the product of two non-squares is a square; indeed, the statement “non-zero
plus non-zero equals zero in Z2” translates via the isomorphism τ to the statement
“non-square times non-square equals square in Z∗p.” 2

Example 6.52. Let Q∗ be the multiplicative group of non-zero rational numbers.
Let H1 be the subgroup {±1}, and let H2 be the subgroup of positive rationals. It
is easy to see that Q∗ = H1 ·H2 and that H1 ∩H2 = {1}. Thus, Q∗ is the internal
direct product of H1 and H2, and Theorem 6.25 gives us a group isomorphism
Q∗ ∼= H1 ×H2. 2
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Let G and G′ be abelian groups. Recall from Example 6.19 that Map(G,G′)
is the group of all functions σ : G → G′, where the group operation is defined
point-wise using the group operation of G′:

(σ + τ)(a) = σ(a) + τ(a) and (−σ)(a) = −σ(a)

for all σ, τ ∈ Map(G,G′) and all a ∈ G. The following theorem isolates an impor-
tant subgroup of this group.

Theorem 6.26. Let G and G′ be abelian groups, and consider the group of func-
tions Map(G,G′). Then

Hom(G,G′) := {σ ∈ Map(G,G′) : σ is a group homomorphism}

is a subgroup of Map(G,G′).

Proof. First, observe that Hom(G,G′) is non-empty, as it contains the map that
sends everything in G to 0G′ (this is the identity element of Map(G,G′)).

Next, we have to show that if σ and τ are homomorphisms from G to G′, then
so are σ + τ and −σ. But σ + τ = ρ2 ◦ ρ1, where ρ1 : G → G′ × G′ is the map
constructed in Theorem 6.21, applied with σ and τ, and ρ2 : G′ × G′ → G′ is as in
Example 6.45. Also, −σ = ρ−1 ◦ σ, where ρ−1 is the (−1)-multiplication map. 2

EXERCISE 6.22. Verify that the “is isomorphic to” relation on abelian groups is
an equivalence relation; that is, for all abelian groups G1,G2,G3, we have:

(a) G1
∼= G1;

(b) G1
∼= G2 implies G2

∼= G1;
(c) G1

∼= G2 and G2
∼= G3 implies G1

∼= G3.

EXERCISE 6.23. Let ρi : Gi → G′i, for i = 1, . . . , k, be group homomorphisms.
Show that the map

ρ : G1 × · · · × Gk → G′1 × · · · × G
′
k

(a1, . . . , ak) 7→ (ρ1(a1), . . . , ρk(ak))

is a group homomorphism. Also show that if each ρi is an isomorphism, then so is
ρ.

EXERCISE 6.24. Let ρ : G → G′ be a group homomorphism. Let H ,K be sub-
groups of G and let m be a positive integer. Show that ρ(H + K) = ρ(H) + ρ(K)
and ρ(mH) = mρ(H).

EXERCISE 6.25. Let ρ : G → G′ be a group homomorphism. LetH be a subgroup
of G, and let τ : H → G′ be the restriction of ρ to H . Show that τ is a group
homomorphism and that Ker τ = Ker ρ ∩H .



152 Abelian groups

EXERCISE 6.26. Suppose G1, . . . ,Gk are abelian groups. Show that for each
i = 1, . . . , k, the projection map πi : G1 × · · · ×Gk → Gi that sends (a1, . . . , ak) to
ai is a surjective group homomorphism.

EXERCISE 6.27. Show that if G = G1×G2 for abelian groups G1 and G2, andH1

is a subgroup ofG1 andH2 is a subgroup ofG2, then we have a group isomorphism
G/(H1 ×H2) ∼= G1/H1 × G2/H2.

EXERCISE 6.28. Let G be an abelian group with subgroups H and K.
(a) Show that we have a group isomorphism (H +K)/K ∼= H/(H ∩K).
(b) Show that if H and K are finite, then |H +K| = |H ||K|/|H ∩K|.

EXERCISE 6.29. Let G be an abelian group with subgroups H , K, and A, where
K ⊆ H . Show that (H ∩ A)/(K ∩ A) is isomorphic to a subgroup of H/K.

EXERCISE 6.30. Let ρ : G → G′ be a group homomorphism with kernel K. Let
H be a subgroup of G. Show that we have a group isomorphism G/(H + K) ∼=
ρ(G)/ρ(H).

EXERCISE 6.31. Let ρ : G → G′ be a surjective group homomorphism. Let S be
the set of all subgroups ofG that contain Ker ρ, and let S ′ be the set of all subgroups
of G′. Show that the sets S and S ′ are in one-to-one correspondence, via the map
that sends H ∈ S to ρ(H) ∈ S ′. Also show that this correspondence preserves
inclusions; that is, for all H1,H2 ∈ S, we have H1 ⊆ H2 ⇐⇒ ρ(H1) ⊆ ρ(H2).

EXERCISE 6.32. Use the previous exercise, together with Theorem 6.9, to get a
short proof of Theorem 6.10.

EXERCISE 6.33. Show that the homomorphism of Example 6.44 arises by direct
application of Example 6.42, combined with Theorems 6.20 and 6.21.

EXERCISE 6.34. Suppose that G, G1, and G2 are abelian groups, and that ρ :
G1 × G2 → G is a group isomorphism. Let H1 := ρ(G1 × {0G2}) and H2 :=
ρ({0G1} × G2). Show that G is the internal direct product of H1 and H2.

EXERCISE 6.35. Let Z+ denote the set of positive integers, and let Q∗ be the
multiplicative group of non-zero rational numbers. Consider the abelian groups
Map#(Z+, Z) and Map#(Z+, Z2), as defined in Exercise 6.14. Show that we have
group isomorphisms

(a) Q∗ ∼= Z2 ×Map#(Z+, Z), and
(b) Q∗/(Q∗)2 ∼= Map#(Z+, Z2).

EXERCISE 6.36. Let n be an odd, positive integer whose factorization into primes
is n = p

e1
1 · · · p

er
r . Show that:
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(a) we have a group isomorphism Z∗n/(Z∗n)2 ∼= Z×r2 ;

(b) if pi ≡ 3 (mod 4) for each i = 1, . . . , r, then the squaring map on (Z∗n)2 is a
group automorphism.

EXERCISE 6.37. Which of the following pairs of groups are isomorphic? Why or
why not? (a) Z2×Z2 and Z4, (b) Z∗12 and Z∗8, (c) Z∗5 and Z4, (d) Z2×Z and Z, (e)
Q and Z, (f) Z × Z and Z.

6.5 Cyclic groups
Let G be an abelian group. For a ∈ G, define 〈a〉 := {za : z ∈ Z}. It is easy
to see that 〈a〉 is a subgroup of G; indeed, it is the image of the group homo-
morphism discussed in Example 6.42. Moreover, 〈a〉 is the smallest subgroup of
G containing a; that is, 〈a〉 contains a, and every subgroup of G that contains a
must contain everything in 〈a〉. Indeed, if a subgroup contains a, it must contain
a + a = 2a, a + a + a = 3a, and so on; it must also contain 0G = 0a, −a = (−1)a,
(−a) + (−a) = (−2)a, and so on. The subgroup 〈a〉 is called the subgroup (of G)
generated by a. Also, one defines the order of a to be the order of the subgroup
〈a〉.

More generally, for a1, . . . , ak ∈ G, we define

〈a1, . . . , ak〉 := {z1a1 + · · · + zkak : z1, . . . , zk ∈ Z}.

It is easy to see that 〈a1, . . . , ak〉 is a subgroup of G; indeed, it is the image of
the group homomorphism discussed in Example 6.44. Moreover, this subgroup is
the smallest subgroup of G that contains a1, . . . , ak; that is, 〈a1, . . . , ak〉 contains
the elements a1, . . . , ak, and every subgroup of G that contains these elements
must contain everything in 〈a1, . . . , ak〉. The subgroup 〈a1, . . . , ak〉 is called the
subgroup (of G) generated by a1, . . . , ak.

An abelian group G is called cyclic if G = 〈a〉 for some a ∈ G, in which case,
a is called a generator for G. An abelian group G is called finitely generated if
G = 〈a1, . . . , ak〉 for some a1, . . . , ak ∈ G.

Multiplicative notation: ifG is written multiplicatively, then 〈a〉 := {az : z ∈ Z},
and 〈a1, . . . , ak〉 := {az1

1 · · · a
zk
k : z1, . . . , zk ∈ Z}; also, for emphasis and clarity,

we use the term multiplicative order of a.

Example 6.53. Consider the additive group Z. This is a cyclic group, with 1 being
a generator:

〈1〉 = {z · 1 : z ∈ Z} = {z : z ∈ Z} = Z.
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For every m ∈ Z, we have

〈m〉 = {zm : z ∈ Z} = {mz : z ∈ Z} = mZ.

It follows that the only elements of Z that generate Z are 1 and −1: every other
element generates a subgroup that is strictly contained in Z. 2

Example 6.54. For n > 0, consider the additive group Zn. This is a cyclic group,
with [1] being a generator:

〈[1]〉 = {z[1] : z ∈ Z} = {[z] : z ∈ Z} = Zn.

For every m ∈ Z, we have

〈[m]〉 = {z[m] : z ∈ Z} = {[zm] : z ∈ Z} = {m[z] : z ∈ Z} = mZn.

By Example 6.23, the subgroup mZn has order n/ gcd(m, n). Thus, [m] has order
n/ gcd(m, n); in particular, [m] generates Zn if and only if m is relatively prime to
n, and hence, the number of generators of Zn is ϕ(n). 2

Implicit in Examples 6.53 and 6.54 is the following general fact:

Theorem 6.27. Let G be a cyclic group generated by a. Then for every m ∈ Z,
we have

〈ma〉 = mG.

Proof. We have

〈ma〉 = {z(ma) : z ∈ Z} = {m(za) : z ∈ Z} = m〈a〉 = mG. 2

The following two examples present some groups that are not cyclic.

Example 6.55. Consider the additive group G := Z × Z. Set

α1 := (1, 0) ∈ G and α2 := (0, 1) ∈ G.

It is not hard to see that G = 〈α1, α2〉, since for all z1, z2 ∈ Z, we have

z1α1 + z2α2 = (z1, 0) + (0, z2) = (z1, z2).

However, G is not cyclic. To see this, let β = (b1, b2) be an arbitrary element of G.
We claim that one of α1 or α2 does not belong to 〈β〉. Suppose to the contrary that
both α1 and α2 belong to 〈β〉. This would imply that there exist integers z and z′

such that

zb1 = 1, zb2 = 0,

z′b1 = 0, z′b2 = 1.
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Multiplying the upper left equality by the lower right, and the upper right by the
lower left, we obtain

1 = zz′b1b2 = 0,

which is impossible. 2

Example 6.56. Consider the additive group G := Zn1 × Zn2 . Set

α1 := ([1]n1 , [0]n2 ) ∈ G and α2 := ([0]n1 , [1]n2 ) ∈ G.

It is not hard to see that G = 〈α1, α2〉, since for all z1, z2 ∈ Z, we have

z1α1 + z2α2 = ([z1]n1 , [0]n2 ) + ([0]n1 , [z2]n2 ) = ([z1]n1 , [z2]n2 ).

However, G may or may not be cyclic: it depends on d := gcd(n1, n2).
If d = 1, then G is cyclic, with α := ([1]n1 , [1]n2 ) being a generator. One can

see this easily using the Chinese remainder theorem: for all z1, z2 ∈ Z, there exists
z ∈ Z such that

z ≡ z1 (mod n1) and z ≡ z2 (mod n2),

which implies

zα = ([z]n1 , [z]n2 ) = ([z1]n1 , [z2]n2 ).

If d > 1, then G is not cyclic. To see this, let β = ([b1]n1 , [b2]n2 ) be an arbitrary
element of G. We claim that one of α1 or α2 does not belong to 〈β〉. Suppose to
the contrary that both α1 and α2 belong to 〈β〉. This would imply that there exist
integers z and z′ such that

zb1 ≡ 1 (mod n1), zb2 ≡ 0 (mod n2),

z′b1 ≡ 0 (mod n1), z′b2 ≡ 1 (mod n2).

All of these congruences hold modulo d as well, and multiplying the upper left
congruence by the lower right, and the upper right by the lower left, we obtain

1 ≡ zz′b1b2 ≡ 0 (mod d),

which is impossible. 2

It should be clear that since a group isomorphism preserves all structural prop-
erties of groups, it preserves the property of being cyclic. We state this, along with
related facts, as a theorem.

Theorem 6.28. Let ρ : G → G′ be a group isomorphism.

(i) For all a ∈ G, we have ρ(〈a〉) = 〈ρ(a)〉.
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(ii) For all a ∈ G, a and ρ(a) have the same order.

(iii) G is cyclic if and only if G′ is cyclic.

Proof. For all a ∈ G, we have

ρ(〈a〉) = {ρ(za) : z ∈ Z} = {zρ(a) : z ∈ Z} = 〈ρ(a)〉.

That proves (i).
(ii) follows from (i) and the fact that ρ is injective.
(iii) follows from (i), as follows. If G is cyclic, then G = 〈a〉, and since ρ is

surjective, we have G′ = ρ(G) = 〈ρ(a)〉. The converse follows by applying the
same argument to the inverse isomorphism ρ−1 : G′ → G. 2

Example 6.57. Consider again the additive group G := Zn1 × Zn2 , discussed in
Example 6.56. If gcd(n1, n2) = 1, then one can also see that G is cyclic as follows:
by the discussion in Example 6.48, we know that G is isomorphic to Zn1n2 , and
since Zn1n2 is cyclic, so is G. 2

Example 6.58. Consider again the subgroup mZn of Zn, discussed in Exam-
ple 6.54. One can also see that this is cyclic of order n/d, where d := gcd(m, n), as
follows: in Example 6.50, we constructed an isomorphism between Zn/d and mZn,
and this implies mZn is cyclic of order n/d. 2

Classification of cyclic groups. Examples 6.53 and 6.54 are extremely important
examples of cyclic groups. Indeed, as we shall now demonstrate, every cyclic
group is isomorphic either to Z or to Zn for some n > 0.

Suppose that G is a cyclic group with generator a. Consider the map ρ : Z→ G

that sends z ∈ Z to za ∈ G. As discussed in Example 6.42, this map is a group
homomorphism, and since a is a generator for G, it must be surjective. There are
two cases to consider.

Case 1: Ker ρ = {0}. In this case, ρ is an isomorphism of Z with G.

Case 2: Ker ρ 6= {0}. In this case, since Ker ρ is a subgroup of Z different from
{0}, by Theorem 6.9, it must be of the form nZ for some n > 0. Hence, by
Theorem 6.23, the map ρ : Zn → G that sends [z]n to za is an isomorphism
of Zn with G.

Based on this isomorphism, we immediately obtain:

Theorem 6.29. Let G be an abelian group and let a ∈ G. If there exists a positive
integer m such that ma = 0G, then the least such positive integer n is the order of
a; in this case, we have:

• for every integer z, za = 0G if and only if n divides z, and more generally,
for all integers z1, z2, we have z1a = z2a if and only if z1 ≡ z2 (mod n);
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• the subgroup 〈a〉 consists of the n distinct elements

0 · a, 1 · a, . . . , (n − 1) · a.

Otherwise, a has infinite order, and every element of 〈a〉 can be expressed as za
for some unique integer z.

In the case where the group is finite, we can say more:

Theorem 6.30. Let G be a finite abelian group and let a ∈ G. Then |G|a = 0G
and the order of a divides |G|.

Proof. Since 〈a〉 is a subgroup of G, by Lagrange’s theorem (Theorem 6.15), the
order of a divides |G|. It then follows by Theorem 6.29 that |G|a = 0G. 2

Example 6.59. Let a, n ∈ Z with n > 0 and gcd(a, n) = 1, and let α := [a] ∈ Z∗n.
Theorem 6.29 implies that the definition given in this section of the multiplicative
order of α is consistent with that given in §2.7. Moreover, Euler’s theorem (Theo-
rem 2.13) can be seen as just a special case of Theorem 6.30. Also, note that α is a
generator for Z∗n if and only if a is a primitive root modulo p. 2

Example 6.60. As we saw in Example 6.26, all elements of Z∗15 have multiplicative
order dividing 4, and since Z∗15 has order 8, we conclude that Z∗15 is not cyclic. 2

Example 6.61. The group Z∗5 is cyclic, with [2] being a generator:

[2]2 = [4] = [−1], [2]3 = [−2], [2]4 = [1]. 2

Example 6.62. Based on the calculations in Example 2.9, we may conclude that
Z∗7 is cyclic, with both [3] and [5] being generators. 2

Example 6.63. Consider again the additive group G := Zn1 × Zn2 , discussed in
Example 6.56. If d := gcd(n1, n2) > 1, then one can also see that G is not cyclic as
follows: for every β ∈ G, we have (n1n2/d)β = 0G, and hence by Theorem 6.29,
the order of β divides n1n2/d. 2

The following two theorems completely characterize the subgroup structure of
cyclic groups. Actually, we have already proven most of the results in these two
theorems, but nevertheless, they deserve special emphasis.

Theorem 6.31. Let G be a cyclic group of infinite order.

(i) G is isomorphic to Z.

(ii) There is a one-to-one correspondence between the non-negative integers
and the subgroups of G, where each such integer m corresponds to the
cyclic group mG.
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(iii) For every two non-negative integers m,m′, we have mG ⊆ m′G if and only
if m′ | m.

Proof. That G ∼= Z was established in our classification of cyclic groups, and so
it suffices to prove the other statements of the theorem for G = Z. As we saw in
Example 6.53, for every integer m, the subgroup mZ is cyclic, as it is generated by
m. This fact, together with Theorem 6.9, establishes all the other statements. 2

Theorem 6.32. Let G be a cyclic group of finite order n.

(i) G is isomorphic to Zn.
(ii) There is a one-to-one correspondence between the positive divisors of n

and the subgroups of G, where each such divisor d corresponds to the
subgroup dG; moreover, dG is a cyclic group of order n/d.

(iii) For each positive divisor d of n, we have dG = G{n/d}; that is, the
kernel of the (n/d)-multiplication map is equal to the image of the d-
multiplication map; in particular, G{n/d} has order n/d.

(iv) For every two positive divisors d, d′ of n, we have dG ⊆ d′G if and only if
d′ | d.

(v) For every positive divisor d of n, the number of elements of order d in G
is ϕ(d).

(vi) For every integer m, we have mG = dG and G{m} = G{d}, where
d := gcd(m, n).

Proof. That G ∼= Zn was established in our classification of cyclic groups, and so
it suffices to prove the other statements of the theorem for G = Zn.

The one-to-one correspondence in part (ii) was established in Theorem 6.10. By
the discussion in Example 6.54, it is clear that dZn is generated by [d] and has
order n/d.

Part (iii) was established in Example 6.23.
Part (iv) was established in Theorem 6.10.
For part (v), the elements of order d in Zn are all contained in Zn{d}, and so

the number of such elements is equal to the number of generators of Zn{d}. The
group Zn{d} is cyclic of order d, and so is isomorphic to Zd, and as we saw in
Example 6.54, this group has ϕ(d) generators.

Part (vi) was established in Example 6.23. 2

Since cyclic groups are in some sense the simplest kind of abelian group, it is
nice to establish some sufficient conditions under which a group must be cyclic.
The following three theorems provide such conditions.

Theorem 6.33. If G is an abelian group of prime order, then G is cyclic.
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Proof. Let |G| = p, which, by hypothesis, is prime. Let a ∈ G with a 6= 0G, and
let k be the order of a. As the order of an element divides the order of the group,
we have k | p, and so k = 1 or k = p. Since a 6= 0G, we must have k 6= 1, and so
k = p, which implies that a generates G. 2

Theorem 6.34. If G1 and G2 are finite cyclic groups of relatively prime order, then
G1 × G2 is also cyclic. In particular, if G1 is generated by a1 and G2 is generated
by a2, then G1 × G2 is generated by (a1, a2).

Proof. We give a direct proof, based on Theorem 6.29. Let n1 := |G1| and
n2 := |G2|, where gcd(n1, n2) = 1. Also, let a1 ∈ G1 have order n1 and a2 ∈ G2

have order n2. We want to show that (a1, a2) has order n1n2. Applying The-
orem 6.29 to (a1, a2), we see that the order of (a1, a2) is the smallest positive
integer k such that k(a1, a2) = (0G1 , 0G2 ). Now, for every integer k, we have
k(a1, a2) = (ka1, ka2), and

(ka1, ka2) = (0G1 , 0G2 ) ⇐⇒ n1 | k and n2 | k
(applying Theorem 6.29 to a1 and a2)

⇐⇒ n1n2 | k (since gcd(n1, n2) = 1). 2

Theorem 6.35. Let G be a cyclic group. Then for every subgroup H of G, both
H and G/H are cyclic.

Proof. The fact that H is cyclic follows from part (ii) of Theorem 6.31 in the case
where G is infinite, and part (ii) of Theorem 6.32 in the case where G is finite. If
G is generated by a, then it is easy to see that G/H is generated by [a]H . 2

The next three theorems are often useful in calculating the order of a group
element. The first generalizes Theorem 2.15.

Theorem 6.36. Let G be an abelian group, let a ∈ G be of finite order n, and let
m be an arbitrary integer. Then the order of ma is n/ gcd(m, n).

Proof. LetH := 〈a〉, and d := gcd(m, n). By Theorem 6.27, we have 〈ma〉 = mH ,
and by Theorem 6.32, we have mH = dH , which has order n/d.

That proves the theorem. Alternatively, we can give a direct proof, based on
Theorem 6.29. Applying Theorem 6.29 to ma, we see that the order of ma is the
smallest positive integer k such that k(ma) = 0G. Now, for every integer k, we
have k(ma) = (km)a, and

(km)a = 0G ⇐⇒ km ≡ 0 (mod n) (applying Theorem 6.29 to a)

⇐⇒ k ≡ 0 (mod n/ gcd(m, n)) (by part (ii) of Theorem 2.5). 2
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Theorem 6.37. Suppose that a is an element of an abelian group, and for some
prime p and integer e ≥ 1, we have pea = 0G and pe−1a 6= 0G. Then a has order
pe.

Proof. If m is the order of a, then since pea = 0G, we have m | pe. So m = pf for
some f = 0, . . . , e. If f < e, then pe−1a = 0G, contradicting the assumption that
pe−1a 6= 0G. 2

Theorem 6.38. Suppose G is an abelian group with a1, a2 ∈ G such that a1 is
of finite order n1, a2 is of finite order n2, and gcd(n1, n2) = 1. Then the order of
a1 + a2 is n1n2.

Proof. Let H1 := 〈a1〉 and H2 := 〈a2〉 so that |H1| = n1 and |H2| = n2.
First, we claim that H1 ∩ H2 = {0G}. To see this, observe that H1 ∩ H2 is a

subgroup ofH1, and so |H1∩H2| divides n1; similarly, |H1∩H2| divides n2. Since
gcd(n1, n2) = 1, we must have |H1 ∩H2| = 1, and that proves the claim.

Using the claim, we can apply Theorem 6.25, obtaining a group isomorphism
between H1 + H2 and H1 × H2. Under this isomorphism, the group element
a1 + a2 ∈ H1 +H2 corresponds to (a1, a2) ∈ H1 ×H2, which by Theorem 6.34
(again using the fact that gcd(n1, n2) = 1) has order n1n2. 2

For an abelian groupG, we say that an integer k killsG if kG = {0G}. Consider
the set KG of integers that kill G. Evidently, KG is a subgroup of Z, and hence of
the form mZ for a uniquely determined non-negative integer m. This integer m is
called the exponent of G. If m 6= 0, then we see that m is the least positive integer
that kills G.

The following two theorems state some simple properties of the exponent of a
group.

Theorem 6.39. Let G be an abelian group of exponent m.

(i) For every integer k, k kills G if and only if m | k.

(ii) If G has finite order, then m divides |G|.
(iii) If m 6= 0, then for every a ∈ G, the order of a is finite and divides m.

(iv) If G is cyclic, then the exponent of G is 0 if G is infinite, and is |G| if G
is finite.

Proof. Exercise. 2

Theorem 6.40. If G1 and G2 are abelian groups of exponents m1 and m2, then the
exponent of G1 × G2 is lcm(m1,m2).

Proof. Exercise. 2
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Example 6.64. The additive group Z has exponent 0. 2

Example 6.65. The additive group Zn has exponent n. 2

Example 6.66. The additive group Zn1 × Zn2 has exponent lcm(n1, n2). 2

Example 6.67. The multiplicative group Z∗15 has exponent 4 (see Example 6.26). 2

The next two theorems develop some crucial properties about the structure of
finite abelian groups.

Theorem 6.41. If an abelian group G has non-zero exponent m, then G contains
an element of order m. In particular, a finite abelian group is cyclic if and only if
its order equals its exponent.

Proof. The second statement follows immediately from the first. For the first state-
ment, let m =

∏r
i=1 p

ei
i be the prime factorization of m.

First, we claim that for each i = 1, . . . , r, there exists ai ∈ G such that (m/pi)ai 6=
0G. Suppose the claim were false: then for some i, (m/pi)a = 0G for all a ∈ G;
however, this contradicts the minimality property in the definition of the exponent
m. That proves the claim.

Let a1, . . . , ar be as in the above claim. Then by Theorem 6.37, (m/peii )ai has
order peii for each i = 1, . . . , r. Finally, by Theorem 6.38, the group element

(m/pe1
1 )a1 + · · · + (m/perr )ar

has order m. 2

Theorem 6.42. Let G be a finite abelian group of order n. If p is a prime dividing
n, then G contains an element of order p.

Proof. We can prove this by induction on n.
If n = 1, then the theorem is vacuously true.
Now assume n > 1 and that the theorem holds for all groups of order strictly less

than n. Let a be any non-zero element of G, and let m be the order of a. Since a is
non-zero, we must have m > 1. If p | m, then (m/p)a is an element of order p, and
we are done. So assume that p - m and consider the quotient group G/H , whereH
is the subgroup of G generated by a. Since H has order m, G/H has order n/m,
which is strictly less than n, and since p - m, we must have p | (n/m). So we can
apply the induction hypothesis to the group G/H and the prime p, which says that
there is an element b ∈ G such that the coset [b]H ∈ G/H has order p. If ` is the
order of b, then `b = 0G, and so `b ≡ 0G (mod H), which implies that the order of
[b]H divides `. Thus, p | `, and so (`/p)b is an element of G of order p. 2

As a corollary, we have:
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Theorem 6.43. Let G be a finite abelian group. Then the primes dividing the
exponent of G are the same as the primes dividing its order.

Proof. Since the exponent divides the order, every prime dividing the exponent
must divide the order. Conversely, if a prime p divides the order, then since there
is an element of order p in the group, the exponent must be divisible by p. 2

EXERCISE 6.38. Find α1, α2 ∈ Z∗15 such that Z∗15 = 〈α1, α2〉.

EXERCISE 6.39. Show that Q∗ is not finitely generated.

EXERCISE 6.40. Let G be an abelian group, a ∈ G, and m ∈ Z, such that m > 0
and ma = 0G. Let m = p

e1
1 · · · p

er
r be the prime factorization of m. For i = 1, . . . , r,

let fi be the largest non-negative integer such that fi ≤ ei and m/pfii · a = 0G.
Show that the order of a is equal to pe1−f1

1 · · · per−frr .

EXERCISE 6.41. Let G be an abelian group of order n, and let m be an integer.
Show that mG = G if and only if gcd(m, n) = 1.

EXERCISE 6.42. Let H be a subgroup of an abelian group G. Show that:

(a) if H and G/H are both finitely generated, then so is G;

(b) if G is finite, gcd(|H |, |G/H |) = 1, and H and G/H are both cyclic, then
G is cyclic.

EXERCISE 6.43. Let G be an abelian group of exponent m1m2, where m1 and m2

are relatively prime. Show that G is the internal direct product of m1G and m2G.

EXERCISE 6.44. Show how Theorem 2.40 easily follows from Theorem 6.32.

EXERCISE 6.45. As additive groups, Z is clearly a subgroup of Q. Consider the
quotient group G := Q/Z, and show that:

(a) all elements of G have finite order;

(b) G has exponent 0;

(c) for all positive integers m, we have mG = G and G{m} ∼= Zm;

(d) all finite subgroups of G are cyclic.

EXERCISE 6.46. Suppose that G is an abelian group that satisfies the following
properties:

(i) for all m ∈ Z, G{m} is either equal to G or is of finite order;

(ii) for some m ∈ Z, {0G} ( G{m} ( G.

Show that G{m} is finite for all non-zero m ∈ Z.
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6.6 The structure of finite abelian groups (∗)
We next state a theorem that classifies all finite abelian groups up to isomorphism.

Theorem 6.44 (Fundamental theorem of finite abelian groups). A finite abelian
group (with more than one element) is isomorphic to a direct product of cyclic
groups

Zpe11
× · · · × Zperr ,

where the pi’s are primes (not necessarily distinct) and the ei’s are positive integers.
This direct product of cyclic groups is unique up to the order of the factors.

An alternative statement of this theorem is the following:

Theorem 6.45. A finite abelian group (with more than one element) is isomorphic
to a direct product of cyclic groups

Zm1 × · · · × Zmt ,

where each mi > 1, and where for i = 1, . . . , t − 1, we have mi | mi+1. Moreover,
the integers m1, . . . ,mt are uniquely determined, and mt is the exponent of the
group.

The statements of these theorems are much more important than their proofs,
which are a bit technical. Even if the reader does not study the proofs, he is urged
to understand what the theorems actually say.

In an exercise below, you are asked to show that these two theorems are equiv-
alent. We now prove Theorem 6.45, which we break into two lemmas, the first of
which proves the existence part of the theorem, and the second of which proves the
uniqueness part.

Lemma 6.46. A finite abelian group (with more than one element) is isomorphic
to a direct product of cyclic groups

Zm1 × · · · × Zmt ,

where each mi > 1, and where for i = 1, . . . , t − 1, we have mi | mi+1; moreover,
mt is the exponent of the group.

Proof. Let G be a finite abelian group with more than one element, and let m be
the exponent of G. By Theorem 6.41, there exists an element a ∈ G of order m.
Let A = 〈a〉. Then A ∼= Zm. Now, if A = G, the lemma is proved. So assume that
A ( G.

We will show that there exists a subgroup B of G such that G = A + B and
A ∩ B = {0G}. From this, Theorem 6.25 gives us an isomorphism of G with
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A × B. Moreover, the exponent of B is clearly a divisor of m, and so the lemma
will follow by induction (on the order of the group).

So it suffices to show the existence of a subgroup B as above. We prove this by
contradiction. Suppose that there is no such subgroup, and among all subgroups
B such that A ∩ B = {0G}, assume that B is maximal, meaning that there is
no subgroup B′ of G such that B ( B′ and A ∩ B′ = {0G}. By assumption
C := A + B ( G.

Let d be any element of G that lies outside of C. Consider the quotient group
G/C, and let r be the order of [d]C ∈ G/C. Note that r > 1 and r | m. We shall
define a group element d′ with slightly nicer properties than d, as follows. Since
rd ∈ C, we have rd = sa+b for some s ∈ Z and b ∈ B. We claim that r | s. To see
this, note that 0G = md = (m/r)rd = (m/r)sa+ (m/r)b, and since A ∩B = {0G},
we have (m/r)sa = 0G, which can only happen if r | s. That proves the claim.
This allows us to define d′ := d − (s/r)a. Since d ≡ d′ (mod C), we see not only
that [d′]C ∈ G/C has order r, but also that rd′ ∈ B.

We next show that A ∩ (B + 〈d′〉) = {0G}, which will yield the contradiction
we seek, and thus prove the lemma. Because A ∩B = {0G}, it will suffice to show
that A∩ (B+ 〈d′〉) ⊆ B. Now, suppose we have a group element b′+xd′ ∈ A, with
b′ ∈ B and x ∈ Z. Then in particular, xd′ ∈ C, and so r | x, since [d′]C ∈ G/C has
order r. Further, since rd′ ∈ B, we have xd′ ∈ B, whence b′ + xd′ ∈ B. 2

Lemma 6.47. Suppose that G := Zm1 × · · · × Zmt and H := Zn1 × · · · × Znt
are isomorphic, where the mi’s and ni’s are positive integers (possibly 1) such that
mi | mi+1 and ni | ni+1 for i = 1, . . . , t − 1. Then mi = ni for i = 1, . . . , t.

Proof. Clearly,
∏

imi = |G| = |H | =
∏

i ni. We prove the lemma by induction on
the order of the group. If the group order is 1, then clearly all the mi’s and ni’s must
be 1, and we are done. Otherwise, let p be a prime dividing the group order. Now,
suppose that p divides mr, . . . ,mt but not m1, . . . ,mr−1, and that p divides ns, . . . , nt
but not n1, . . . , ns−1, where r ≤ t and s ≤ t. Evidently, the groups pG and pH are
isomorphic. Moreover,

pG ∼= Zm1 × · · · × Zmr−1 × Zmr/p × · · · × Zmt/p,

and

pH ∼= Zn1 × · · · × Zns−1 × Zns/p × · · · × Znt/p.

Thus, we see that |pG| = |G|/pt−r+1 and |pH | = |H |/pt−s+1, from which it follows
that r = s, and the lemma then follows by induction. 2

EXERCISE 6.47. Show that Theorems 6.44 and 6.45 are equivalent; that is, show
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that each one implies the other. To do this, give a natural one-to-one correspond-
ence between sequences of prime powers (as in Theorem 6.44) and sequences of
integers m1, . . . ,mt (as in Theorem 6.45).

EXERCISE 6.48. Using the fundamental theorem of finite abelian groups (either
form), give short and simple proofs of Theorems 6.41 and 6.42.

EXERCISE 6.49. In our proof of Euler’s criterion (Theorem 2.21), we really only
used the fact that Z∗p has a unique element of multiplicative order 2. This exercise
develops a proof of a generalization of Euler’s criterion, based on the fundamental
theorem of finite abelian groups. Suppose G is an abelian group of even order n
that contains a unique element of order 2.

(a) Show that G ∼= Z2e × Zm1 × · · · × Zmk , where e > 0 and the mi’s are odd
integers.

(b) Using part (a), show that 2G = G{n/2}.

EXERCISE 6.50. Let G be a non-trivial, finite abelian group. Let s be the smallest
positive integer such that G = 〈a1, . . . , as〉 for some a1, . . . , as ∈ G. Show that s
is equal to the value of t in Theorem 6.45. In particular, G is cyclic if and only if
t = 1.

EXERCISE 6.51. Suppose G ∼= Zm1 × · · · ×Zmt . Let p be a prime, and let s be the
number of mi’s divisible by p. Show that G{p} ∼= Z×sp .

EXERCISE 6.52. Suppose G ∼= Zm1 × · · · ×Zmt with mi | mi+1 for i = 1, . . . , t− 1,
and that H is a subgroup of G. Show that H ∼= Zn1 × · · · ×Znt , where ni | ni+1 for
i = 1, . . . , t − 1 and ni | mi for i = 1, . . . , t.

EXERCISE 6.53. Suppose that G is an abelian group such that for all m > 0,
we have mG = G and |G{m}| = m2 (note that G is not finite). Show that
G{m} ∼= Zm × Zm for all m > 0. Hint: use induction on the number of prime
factors of m.


